

Fig. 1—Resonant ring circuit.

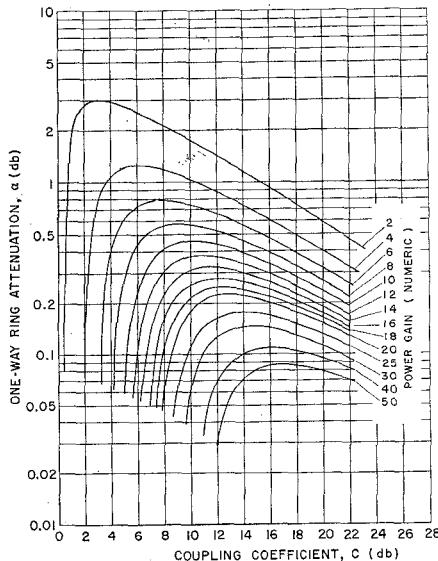


Fig. 2—Resonant ring characteristics with power gain as the parameter.

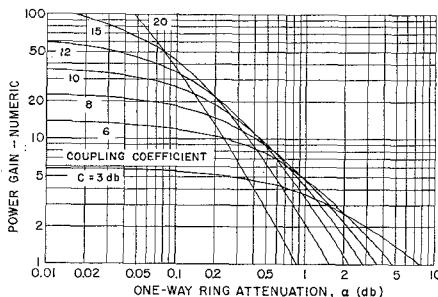


Fig. 3—Resonant ring power gain with coupling coefficient as the parameter.

components. This is because maximum electric fields do not occur at the same location as the maximum magnetic fields. To overcome this doubt, a resonant ring circuit can be employed^{1,2,3} (see Fig. 1). In this circuit, the waves are ideally unidirectional and it is possible to obtain "power-level multiplication" of 10 to 50 times the transmitter output. The amount of multiplication depends on the value of the directional coupler and

¹ P. J. Serrazza, "Traveling-wave resonator," *Tele-Tech.*, vol. 14, pp. 84-85, 142-143; November, 1955.

² L. Milosevic and R. Vautey, "Traveling-wave resonator," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-6, pp. 136-143; April, 1958.

³ F. J. Tischer, "Resonance properties of ring circuits," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-5, pp. 51-56; January, 1957.

is very sensitive to the attenuation in the ring circuit.^{2,3} The purpose of this brief paper is to illustrate these dependences in convenient graphical form.

If the ring circuit is properly matched in impedance⁴ and the phase shifter is adjusted for resonance condition, the power "multiplication" or gain PG is given by

$$PG = \left[\frac{C}{1 - k\sqrt{1 - C^2}} \right]^2,$$

where

C = voltage coupling coefficient of the directional coupler, less than unity,
 $k = 10^{-\alpha/20}$, a voltage ratio less than unity,
and
 α = one-way attenuation around the ring, in db.

This power gain equation is plotted in Figs. 2 and 3. For example, if a power gain of 20 is desired and the ring circuit attenuation is 0.2 db, either an 11- or 16-db coupler is needed.

K. TOMIYASU
General Electric Microwave Lab.
Palo Alto, Calif.

⁴ K. Tomiyasu, "Effect of a mismatched ring in a traveling-wave resonant circuit," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-5, p. 267; October, 1957.

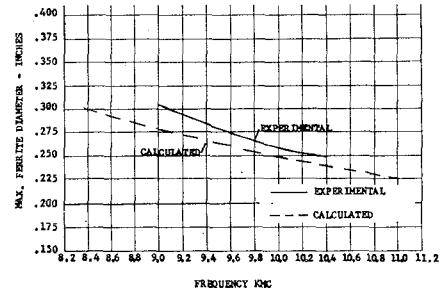


Fig. 1—Calculated and experimental curves of maximum ferrite diameter for suppression of higher-order modes as a function of frequency for RG 52/u waveguide. Device uses R-1 ferrite.

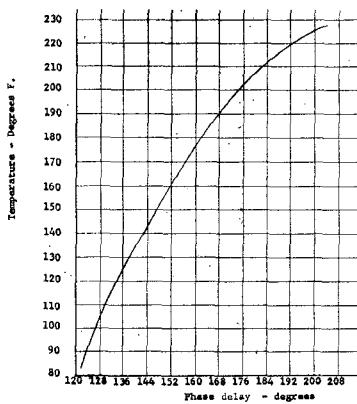


Fig. 2—Change of phase length with temperature using constant bias current of 85-ampere turns. RF frequency, 10.0 kmc. R-1 ferrite 0.250 diameter.

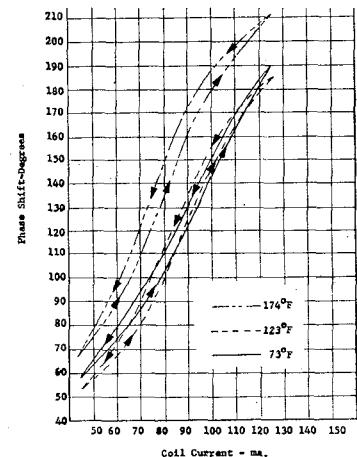


Fig. 3—Phase modulation characteristic of the phase shifter using an 85-ampere turn bias for various temperatures. RF frequency, 10.0 kmc.

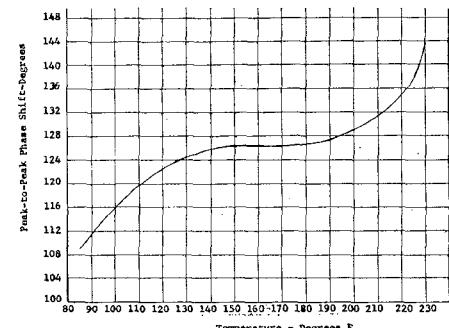


Fig. 4—Peak-to-peak phase modulation as a function of temperature with a constant bias of 85 ma, and a modulation current of ± 60 ma at 500 cps.

* Received by the PGM TT, November 13, 1959. The research reported herein has been sponsored by the Electronics Research Directorate of the Air Force Cambridge Research Center, Air Research and Development Command, under Contract AF19(604)-3467.

¹ F. Reggia and E. G. Spencer, "A new technique in ferrite phase shifting for beam scanning of microwave antennas," *Proc. IRE*, vol. 45, pp. 1510-1517; November, 1957.

² A. Clavin, "Reciprocal ferrite phase shifters in rectangular waveguide," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-6, p. 334; July, 1958.

³ F. E. Goodwin and H. R. Senf, "Volumetric scanning of a radar with ferrite phase shifter," *PROC. IRE*, vol. 47, pp. 453-454; March, 1959.

⁴ J. A. Weiss, "A phenomenological theory of the Reggia-Spencer phase shifter," *PROC. IRE*, vol. 47, pp. 1130-1137; June, 1959.

⁵ P. A. Rizzi and B. Gatlin, "Rectangular guide ferrite phase shifters employing longitudinal magnetic fields," *PROC. IRE*, vol. 47, pp. 1130-1137; June, 1959.

where

C = velocity of light,
 f = frequency,
 ϵ = dielectric constant.

It is at this diameter that orthogonal TE_{11} modes can propagate in the ferrite acting as a dielectric waveguide. We have observed an additional phenomena which can also be explained by this dielectric waveguide model. This effect is discussed by Weiss⁴ and is associated with the large amount of periodic loss which occurs as one increases the microwave frequency above a critical value. I believe a simple explanation of this behavior can be attributed to the excitation of the next higher order mode, the TM_{01} . This mode can only propagate in the ferrite region and is not matched to the rectangular waveguide by the transformer that matches the TE_{11} mode. Multiple reflections, therefore, occur between the ferrite ends with periodic losses resulting. In a similar manner to that used by Rizzi and Gatlin, the frequency at which this mode propagates is computed by

$$f > \frac{C}{1.309 d \sqrt{\epsilon}}. \quad (2)$$

The dashed curve in Fig. 1 has been calculated using this relationship with $\epsilon = 13$. Also presented is an experimental curve obtained with R-1 ferrite. The two curves show a general agreement. Some of the differences in the two curves can be possibly explained by the value of ϵ used as well as the effect of the waveguide height. Since all the microwave energy is not trapped to the ferrite, especially at low applied fields, a reduction in the narrow dimension should raise the frequency at which the TM_{01} mode can propagate. We have experimentally observed the above to be true.

ON TEMPERATURE SENSITIVITY

The temperature sensitivity of the Reggia-Spencer phase shifter has been of concern in those applications which require precise phase control or phase modulation. In applications that require both phase advances and delays, bias currents are required because of the reciprocal nature of

the phase shifter. The phase delay, as a function of temperature at a bias point of 85 ampere-turns for R-1 ferrite 1.4 inches long with 0.6-inch conical tapers, is shown in Fig. 2. It can be observed that over very large temperature ranges as much phase shift can be obtained from this effect as from applied magnetic fields.

The type of phase modulation characteristics obtainable about the 85-ampere-turn bias points as a function of temperature, is shown in Fig. 3. These curves are plotted on a relative basis; *i.e.*, they all use the same zero field phase-shift value. Note that the peak-to-peak phase shift is quite constant. This is illustrated by Fig. 4, which indicates the variation in the peak-to-peak phase shifts as a function of temperature. There is a fairly large range of temperature possible with little change in phase modulation characteristics. Therefore, if one desires to use these devices as phase modulators it is possible to do so with little change in the index of modulation with temperature.

ALVIN CLAVIN
 RANTEC Corporation
 Calabasas, Calif.

Contributors

Barbara A. Begg was born in Boston, Mass. on July 2, 1920. She received the A.B. degree from Boston University, in 1942; a special certificate in aeronautical engineering from New York University, in New York City, in 1944; and in 1956, the masters degree in library science from Carnegie Institute of Technology in Pittsburgh, Pa.

She was employed in the Experimental Flight Test Group at

Chance Vought Aircraft, Dallas, Texas; in the Wind Tunnel Computing Section at North American Aviation; and, from 1950 to 1955, in the Aircraft Gas Turbine Division of General Electric Company. In 1956, she joined the ITT Laboratories, Nutley, N. J., as assistant librarian. She became the engineering librarian at Drexel Institute of Technology, Philadelphia, Pa. in July, 1959.

B. A. BEGG

Miss Begg belongs to the AIEE, Special Libraries Association, American Libraries Association, and American Documentation Institute.

Robin M. Chisholm (S'52-A'54) was born in London, Can., in January 11, 1930. He attended Queen's University in Kingston,

Ontario, where he received the B.S. degree in engineering physics in 1952. He studied in the graduate school of the University of Toronto where he received the M.A.Sc. degree in electrical engineering in 1954 and the Ph.D. degree in 1958.

Since graduation he has worked during the summers for the National Research Council of Canada at Ottawa, Ontario. In

R. M. CHISHOLM

1956 he joined the staff of the Department of Electrical Engineering at Queen's University, Kingston, Ontario, where he is at present an assistant professor.

He is a member of the Association of Professional Engineers of the Province of Ontario.

John R. Cogdell was born on May 24, 1936 in Quanah, Tex. He received the B.S. degree in electrical engineering in May, 1958, and the M.S. degree in electrical engineering in August, 1959, both from the University of Texas, Austin.

From June, 1958 to July, 1959 he was research engineer at the Electrical Engineering Research Laboratory at the University of Texas.

J. R. COGDELL